A Best Proximity Theorem for Some General Contractive Pair of Maps

Bhagwati Prasad
Department of Mathematics
Jaypee Institute of Information Technology
A-10, Sector-62, Noida-201307, India
b_prasad10@yahoo.com; bhagwati.prasad@jiit.ac.in

Abstract—The intent of the paper is to study semi-cyclic type contraction condition for a pair of maps \((S, T) \). Our aim is to establish an existence theorem for common fixed points and best proximity points for such a pair in Banach spaces. The results obtained herein extend some recent results.

Index Terms—Fixed point; best proximity point; cyclic contraction.

I. INTRODUCTION

Let \(T \) be a self map of a nonempty set \(X \). A point \(x \in X \) such that \(Tx = x \) is called a fixed point of the map \(T \). The fixed points are of vital importance since most of the equations arising in the modeling of various physical formulations can easily be transformed into a fixed point equation and a fixed point or an approximate fixed point of the map \(T \) provides the solution or approximate solution to such problems. If \(T \) is a non-self-mapping, it may be possible that the fixed point equation \(Tx = x \) has no solution. In such a case the best proximity point theorems analyze the existence of an optimal approximate solution. Kirk et al [6] introduced 2-cyclic contraction and obtained the best proximity points of the map. Eldred and Veeramani [3] defined a more generalized notion of cyclical maps and established a unique best proximity point for the mapping \(T \) in a uniformly convex Banach space. Subsequently, a number of extensions and generalizations of their results appeared in [1]-[2], [4]-[5] and [7] and several references thereof. Recently, Gabeleh and Abkar [4] introduced the notion of a semi-cyclic contraction pair by taking two self maps. Our aim is to establish an existence and convergence result for the best proximity points for a semi-cyclic contraction pair \((S, T) \) in Banach spaces.

II. PRELIMINARIES

Let \((X, d) \) be a complete metric space and \(T : A \cup B \rightarrow A \cup B \), where \(A \) and \(B \) are any two nonempty closed subsets of \(X \). The map \(T \) is said to be cyclic if \(T(A) \subseteq B \) and \(T(B) \subseteq A \). Assume further that there exists \(0 \leq \alpha < 1 \) such that

\[
d(Tx, Ty) \leq \alpha d(x, y), \quad x \in A, \ y \in B.
\]
It follows that \(A \cap B \neq \emptyset \) and that the cyclic map \(T \) has a unique fixed point in \(A \cap B \) (see [6]).

According to [3], a self mapping \(T \) on \(A \cup B \) is said to be a cyclic contraction if \(T \) is cyclic and satisfies the following condition for all \(x \in A, \ y \in B \) and \(0 \leq \alpha < 1 \).

\[
d(Tx, Ty) \leq \alpha d(x, y) + (1 - \alpha) d(A, B) \quad (2)
\]

It is to be noticed that in this case the fixed point of \(T \) does not exist (since \(A \cap B = \emptyset \)), however, one may discover a possibility of a best proximity point, that is, an \(x \) in \(A \cup B \) such that

\[
d(x, Tx) = d(A, B) = \inf \{ d(x, y) : x \in A, \ y \in B \}.
\]

In [4], the notion of \((S, T)\) semi-cyclic contraction pair is introduced by taking two self maps \(S \) and \(T \) on \(A \cup B \) such that \(S(A) \subseteq B, T(B) \subseteq A \) and \(S, T \) satisfy the following condition for all \(x \in A, \ y \in B \) and \(0 \leq \alpha < 1 \).

\[
d(Sx, Ty) \leq \alpha d(x, y) + (1 - \alpha) d(A, B) \quad (3)
\]

It is remarkable that a semi-cyclic contraction pair reduces to a cyclic contraction when we put \(S = T \).

III. MAIN RESULTS

A. Proposition 3.1

Let \(A \) and \(B \) be nonempty subsets of a metric space \(X \) and \(S, T : A \cup B \to A \cup B \) satisfy \(S(A) \subseteq B, T(B) \subseteq A \) and

\[
d(Sx, Ty) \leq \alpha d(x, y) + \beta d(Sx, Ty) + \gamma d(A, B) \quad (4)
\]

for all \(x, y \in A \cup B \), where \(\alpha, \beta, \gamma \geq 0 \) and \(\alpha + 2\beta + \gamma < 1 \).

Consider \(x_0 \in A \), and define: \(x_{n+1} = Ty_n, \ y_n = Sx_n, \ n = 0, 1, 2, ... \). Then \{\(x_n \)\} and \{\(y_n \)\} are sequences in \(A, B \), respectively. Moreover, \(d(x_n, Sx_n) \to d(A, B) \) and \(d(y_n, Ty_n) \to d(A, B) \).

Proof. First, we note that

\[
d(x_n, Sx_n) = d(Ty_{n-1}, Sx_n)
\]

\[
\leq \alpha d(x_n, y_{n-1}) + \beta [d(x_n, Sx_n) + d(y_{n-1}, Ty_{n-1})] + \gamma d(A, B)
\]

Therefore,

\[
d(Ty_{n-1}, Sx_n) \leq \frac{\alpha}{1 - \beta} d(x_n, y_{n-1}) + \frac{\beta}{1 - \beta} d(y_{n-1}, Ty_{n-1}) + \frac{\gamma}{1 - \beta} d(A, B)
\]

\[
\leq \frac{\alpha + \beta}{1 - \beta} d(Sx_{n-1}, Ty_{n-1}) + \frac{\gamma}{1 - \beta} d(A, B)
\]

Now, if \(s = (\alpha + \beta)/(1 - \beta) \), then

\[
d(Ty_{n-1}, Sx_n) \leq sd(Sx_{n-1}, Ty_{n-1}) + (1 - s)d(A, B)
\]

\[
\leq s^2 d(Sx_{n-1}, Ty_{n-1}) + (1 - s^2)d(A, B)
\]

\[
\leq ... \leq s^{2n} d(x_1, y_0) + (1 - s^{2n})d(A, B)
\]

494
Hence \(d(x_n, Sx_n) \to d(A, B) \).
Similarly, it can be shown that \(d(y_n, Ty_n) \to d(A, B) \).

B. Proposition 3.2

Let \((S, T)\) be a semi-cyclic pair of maps satisfying (4) and sequences \(\{x_n\}\) and \(\{y_n\}\) are generated as follows:

\[
x_{n+1} = Ty_n \quad \text{and} \quad y_n = Sx_n, \quad n = 0, 1, 2, \ldots
\]

If both \(\{x_n\}\) and \(\{y_n\}\) have a convergent subsequence in \(A\) and \(B\), respectively, then there exist \(x \in A\) and \(y \in B\) such that

\[
d(x, Sx) = d(A, B) = d(y, Ty).
\]

Proof. Let \(\{y_{n_k}\}\) be a subsequence of \(\{y_n\}\) such that \(y_{n_k} \to y\).

Since \(d(A, B) \leq d(Ty_{n_k}, y) \leq d(y, y_{n_k}) + d(y_{n_k}, Ty_{n_k})\),
from Proposition 3.1, we obtain \(d(y, Ty_{n_k}) \to d(A, B)\).

Also, we have

\[
d(A, B) \leq d(Ty_{n_k}, y_{n_k}) = d(Ty, Sx_{n_k})
\]

\[
\leq \alpha d(x_{n_k}, y) + \beta d(x_{n_k}, Sx_{n_k}) + d(y, Ty) + \gamma d(A, B)
\]

\[
\leq \alpha d(Ty_{n_k}, y) + \beta d(Ty_{n_k}, y_{n_k}) + d(y, Ty) + \gamma d(A, B).
\]

On letting \(k \to \infty\), we obtain \(d(Ty, y) = d(A, B)\).

On the similar steps, we can prove \(d(x, Sx) = d(A, B)\).

We need following results of [3] in the sequel.

C. Lemma 3.1 [3]

Let \(X\) be a uniformly convex Banach space, \(A\) a nonempty closed convex subset and \(B\) a nonempty closed subset of it. Let \(\{x_n\}\), \(\{z_n\}\) be two sequences in \(A\), and \(\{y_n\}\) be a sequence in \(B\) such that

(i) \(\|z_n - y_n\| \to \|A - B\|\)

(ii) \(\forall \varepsilon > 0, \exists N_0\) such that for all \(m > n \geq N_0\):

\[
\|x_m - y_n\| \leq \|A - B\|
\]

Then for every \(\varepsilon > 0\) there exists \(N_1\) such that for all \(m > n \geq N_1\) we have \(\|x_m - z_n\| \leq \varepsilon\).

D. Lemma 3.2 [3]

Let \(X\) be a uniformly convex Banach space, \(A\) a nonempty closed convex subset and \(B\) a nonempty closed subset of it. Let \(\{x_n\}\), \(\{z_n\}\) be two sequences in \(A\), and \(\{y_n\}\) be a sequence in \(B\) such that

(i) \(\|x_n - y_n\| \to \|A - B\|\).

(ii) \(\|z_n - y_n\| \to \|A - B\|\).

Then \(\|x_n - z_n\| \to 0\).
Now we present our main theorem.

Theorem 3.1. Let A, B be two nonempty closed convex subsets of a uniformly convex Banach space X. Let (S, T) be a semi-cyclic mapping satisfying (4).

(i) If $\|A - B\| = 0$, then S, T have a unique common fixed point in $A \cap B$.

(ii) If $\|A - B\| > 0$, then each mapping has a unique best proximity point.

Additionally, we can approximate fixed point or the best proximity point through some iterative sequences.

Proof. We first assume $\|A - B\| = 0$. Then for all $x \in A, y \in B$

$$\|Tx - Ty\| \leq \alpha \|d(x, y)\| + \beta \|x - Sx\| + \|y - Ty\|$$

The sequence $\{z_n\}_{n \geq 1}$ in $A \cup B$ is defined as follows:

$$z_n = \begin{cases} Ty_k & n = 2k \\ Sx_k & n = 2k - 1 \end{cases}$$

To prove that $\{z_n\}_{n \geq 1}$ is a Cauchy sequence in $A \cup B$.

If $n = 2k$, we have

$$\|z_{n+1} - z_n\| = \|Sx_{k+1} - Ty_k\|$$

$$\leq \alpha \|d(x_{k+1}, y_k)\| + \beta \|x_{k+1} - Sx_k\| + \|y_k - Ty_k\|$$

$$\leq \alpha \|d(Ty_k - Sx_k) + \beta \|Ty_k - Sx_k\| + \|Sx_k - Ty_k\|$$

$$\leq \frac{\alpha + \beta}{1 - \beta} \|Ty_k - Sx_k\|.$$

Let $s = \frac{\alpha + \beta}{1 - \beta}$, then

$$\|z_{n+1} - z_n\| = \|Sx_{k+1} - Ty_k\| \leq s \|Ty_k - Sx_k\|$$

$$\leq s^k \|y_k - x_k\| \leq \ldots \leq s^k \|y_1 - x_1\| \to 0 \quad \text{as} \quad k \to \infty.$$

Proceeding similarly for $n = 2k - 1$, we can draw the same conclusion, so that for $m > n$,

$$\|z_m - z_n\| \leq \sum_{k=n}^{m-1} s^k \|y_1 - x_1\| \to 0, \quad n, m \to \infty$$

Then there exists $z \in A \cup B$ such that $z_n \to z$. Assume that $z \in A$. Since $\{z_{2k-1}\} \subseteq B$, it follows that $z \in B$, and finally $z \in A \cap B$. In case that $z \in B$, the same argument again shows that $z \in A \cap B$.

On the other hand,

$$\|z - Tz\| = \lim_k \|y_k - Tz\| = \lim_k \|Sx_k - Tz\|$$

$$\leq \alpha \|x_k - z\| + \beta \|x_k - Sx_k\| + \|z - Tz\|,$$

and thus

$$\|z - Tz\| \leq \beta \|z - Tz\|,$$ a contradiction.

This implies that $Tz = z$.

Similarly, we see that $Sz = z$.
Hence T, S have a common fixed point.

To prove uniqueness, we take another common fixed point z of the maps (if exists).
In fact, if $Tw = w = Sw$ for some $w \in A \cap B$, then
\[
\|z - w\| = \|Tz - Sw\| \leq \alpha \|z - w\| + \beta \|z - Sz\| + \|w - Tw\|
\]
Thus $z = w$. This completes the proof of part (i).

To prove (ii), assume $\|A - B\| > 0$.
Since (S, T) is a semi-cyclic contraction pair satisfying (4), we have
\[
\|y_n - Ty_n\| = \|Sx_n - Ty_n\|
\leq \alpha \|x_n - y_n\| + \beta \|x_n - Sx_n\| + \gamma \|y_n - Ty_n\| + \|A - B\|
\]
Using Proposition 3.1 in it, we get
\[
\|y_n - x_{n+1}\| \rightarrow \|A - B\|
\]
On the similar lines, we obtain $\|y_{n+1} - x_{n+1}\| \rightarrow \|A - B\|
Using Lemma 3.2, we have $\|y_n - y_{n+1}\| \rightarrow 0$.
Similarly, $\|x_n - x_{n+1}\| \rightarrow 0$.

Now we claim that for every $\varepsilon > 0$ there exists N_0 such that for all $m > n > N_0$, we have
\[
\|y_m - Ty_n\| = \|y_m - x_{n+1}\| \leq \|A - B\| + \varepsilon.
\]
We suppose the contrary, then there exists $\varepsilon > 0$ such that for all $k \geq 1$ there exist $m_k > n_k \geq k$ for which
\[
\|y_{m_k} - Ty_{n_k}\| \geq \|A - B\| + \varepsilon.
\]
This m_k may be chosen in such a way that it is the least integer greater than n_k to satisfy the above inequality.
Now
\[
\|A - B\| + \varepsilon \leq \|y_{m_k} - Ty_{n_k}\| \leq \|y_{m_k} - y_{m_{k+1}}\| + \|y_{m_{k+1}} - Ty_{n_k}\|
\leq \|y_{m_k} - y_{m_{k+1}}\| + \|A - B\| + \varepsilon
\]
Hence $\|y_{m_k} - Ty_{n_k}\| \rightarrow \|A - B\| + \varepsilon$. Then
\[
\|y_{m_k} - Ty_{n_k}\| \leq \|y_{m_k} - y_{m_{k+1}}\| + \|y_{m_{k+1}} - Ty_{n_k}\| \leq \|y_{m_k} - y_{m_{k+1}}\| + \varepsilon
\]
\[
\leq \|y_{m_k} - y_{m_{k+1}}\| + \varepsilon \leq \|y_{m_k} - y_{m_{k+1}}\| + \varepsilon \leq \|A - B\| + \varepsilon,
\]
letting $k \rightarrow \infty$ in above, we obtain
\[
\|A - B\| + \varepsilon \leq \|A - B\| + \varepsilon
\]
which is a contradiction.
Hence, $\{y_n\}$ is a Cauchy sequence by Lemma 3.1.
So, there exists $y \in B$ such that $\{y_n\} \rightarrow y$.
From Proposition 3.2, $\|y - Ty\| = \|A - B\|$. Similarly,
we can be prove \(\{x_n\} \rightarrow x \in A \) and \(\|x - Sx\| = \|A - B\| \).

For the uniqueness, let \(w \in A \) be such that \(\|w - Sw\| = \|A - B\| \). Since
\[
\|A - B\| \leq \|T^*Sx - Sx\|
\leq \alpha \|Sx - x\| + \beta \|Sx - Sx\| + \|x - Sx\| + \gamma \|A - B\|
\leq (\alpha + 2\beta + \gamma) \|A - B\| \leq \|A - B\|
\]
It follows that \(T^*Sx - Sx = \|x - Sx\| \). This in turn establishes \(TSx = x \). Similarly, we see that \(TSw = w \).

Now if \(w \neq x \), then \(\|x - Sw\| > \|A - B\| \), from which we obtain
\[
\|Sx - w\| = \|Sx - TSx\| \leq \alpha \|x - Sw\| + \beta \|x - Sx\| + \|Sw - TSx\| + \gamma \|A - B\|
\leq \alpha \|x - Sw\| + (\beta + \gamma) \|A - B\|
\leq \alpha \|x - Sw\| + (1 - \alpha \|A - B\|)
\]
Again \(\|x - Sw\| = \|TSx - Sw\| \)
\[
\leq \alpha \|Sx - w\| + \beta \|Sx - TSx\| + \|w - Sw\| + \gamma \|A - B\|
\leq \alpha \|Sx - w\| + (2\beta + \gamma) \|A - B\|
\leq \alpha \|Sx - w\| + (1 - \alpha) \|Sx - w\|
\]
Thus we have, \(\|Sx - w\| \leq \|Sx - w\| \), a contradiction.
Hence the proof is completed.

\[E. \text{ Corollary 3.1} \[4\]\]
Let \(A, B \) be two nonempty closed convex subsets of a uniformly convex Banach space \(X \). Let \((S, T)\) be a semi-cyclic contraction mapping.
(i) If \(\|A - B\| = 0 \), then \(S, T \) have a unique common fixed point in \(A \cap B \).
(ii) If \(\|A - B\| > 0 \), then each mapping has a unique best proximity point.
Moreover either of fixed point or best proximity points can be approximated by some iterative sequences.

Proof. It follows from Theorem 3.1 when \(\beta = 0 \) and \(\gamma = 1 - \alpha \).

\[C O N C L U S I O N\]
We obtain an existence and convergence result for the common fixed points and best proximity points for a semi-cyclic contraction pair in Banach spaces. Such results analyze the existence of an optimal approximate solution in case a fixed point equation has no solution. The results obtained herein extend the result of Gabeleh and Abkar [4].

498
REFERENCES

499